Almaz Khusnutdinov•Math enthusiast, love coding and mathematics
Published 9/22/2025
Evaluate Series Applying Riemann Integral
Problem 1.1
Evaluate:(a) n→∞limn1k=1∑nsinnkπ,(b) n→∞limn1k=1∑ntan3nkπ.Answer: (a)π2;(b)π3ln2.Solution: (a) Let xk=nkπ,Δx=nπ.n1k=1∑nsinnkπ=π1k=1∑nsin(xk)Δxn→∞π1∫0πsinxdx=π2.(b) Let yk=3nkπ,Δy=3nπ.n1k=1∑ntan3nkπ=π3k=1∑ntan(yk)Δyn→∞π3∫0π/3tanxdx=π3[−ln(cosx)]0π/3=π3ln2.
Composite trapezoidal rule on [0,1] for f(x)=x2.h=n1.(a) Write Tn=h[2f(0)+f(1)+k=1∑n−1f(kh)].(b) Find a closed form for Tn and the exact error En=Tn−∫01x2dx.(c) Smallest n with ∣En∣<10−3.Answer: Tn=6n22n2+1,∫01x2dx=31,En=6n21,nmin=13.Solution: Tn=n1[20+1+k=1∑n−1(nk)2]=n1[21+n21k=1∑n−1k2].k=1∑n−1k2=6(n−1)n(2n−1)⇒Tn=n1[21+6n(n−1)(2n−1)]=6n22n2+1.∫01x2dx=31⇒En=Tn−31=6n21.∣En∣<10−3⇒n2>6⋅10−31=166.6⇒nmin=13.
Problem 2.2
Composite trapezoidal rule on [0,1] for f(x)=x3.h=n1.(a) Tn=h[2f(0)+f(1)+k=1∑n−1f(kh)].(b) En=Tn−∫01x3dx.(c) Smallest n with ∣En∣<10−3.Answer: Tn=4n2n2+1,∫01x3dx=41,En=4n21,nmin=16.
Problem 2.3
Composite trapezoidal rule on [0,2] for f(x)=x2.h=n2.(a) Compute Tn.(b) Exact En=Tn−∫02x2dx.(c) Smallest n with ∣En∣<10−3.Answer: Tn=38+3n24,∫02x2dx=38,En=3n24,nmin=37.
Problem 2.4
Composite trapezoidal rule on [0,π] for f(x)=cosx.h=nπ.(a) Compute Tn.(b) Exact En=Tn−∫0πcosxdx.(c) Smallest n with ∣En∣<10−3.Answer: Tn=0,∫0πcosxdx=0,En=0,nmin=1.
Problem 2.5
Composite trapezoidal rule on [0,1] for f(x)=ex.h=n1.(a) Compute Tn.(b) Exact En=Tn−(e−1).(c) Smallest n with ∣En∣<10−3.Answer: Tn=n1[21+e+e1/n−1e−e1/n],En=Tn−(e−1),nmin=16.