Almaz Khusnutdinov•Math enthusiast, love coding and mathematics
Published 9/22/2025
Evaluate Series Applying Riemann Integral
Problem 1.1
Evaluate:(a) n→∞limn1k=1∑nsinnkπ,(b) n→∞limn1k=1∑ntan3nkπ.Answer: (a)π2;(b)π3ln2.Solution: (a) Let xk=nkπ,Δx=nπ.n1k=1∑nsinnkπ=π1k=1∑nsin(xk)Δxn→∞π1∫0πsinxdx=π2.(b) Let yk=3nkπ,Δy=3nπ.n1k=1∑ntan3nkπ=π3k=1∑ntan(yk)Δyn→∞π3∫0π/3tanxdx=π3[−ln(cosx)]0π/3=π3ln2.
Let f be continuous on [a,b].Prove that there exists c∈[a,b] with ∫abf(x)dx=(b−a)f(c).Detailed solution:Let m=x∈[a,b]minf(x),M=x∈[a,b]maxf(x). Continuity on the compact interval [a,b]ensures m,M exist and m≤f(x)≤M∀x∈[a,b]. Integrating these inequalities gives m(b−a)=∫abmdx≤∫abf(x)dx≤∫abMdx=M(b−a).Divide by (b−a)>0 to obtain m≤b−a1∫abf(x)dx≤M.But f([a,b])=[m,M] because f is continuous (the image of a connected set is connected). Henceb−a1∫abf(x)dx∈[m,M]=f([a,b]).Therefore there exists c∈[a,b] with f(c)=b−a1∫abf(x)dx, i.e. ∫abf(x)dx=(b−a)f(c).
Problem 2.2
Let f,g be continuous on [a,b] with g(x)≥0 on [a,b] and g≡0.Show there exists c∈[a,b] with ∫abf(x)g(x)dx=f(c)∫abg(x)dx.Proof outline:Let m=[a,b]minf,M=[a,b]maxf.Then mg(x)≤f(x)g(x)≤Mg(x)∀x.Integrate to get m∫abg(x)dx≤∫abf(x)g(x)dx≤M∫abg(x)dx.If I:=∫abg(x)dx>0 then divide by I to see m≤I1∫abfg≤M.By continuity of f its range on [a,b] is [m,M], so some c∈[a,b] satisfies f(c)=I1∫abfg.Hence ∫abfg=f(c)∫abg.
Problem 2.3
(a) Let f(x)=x2 on [1,3].(b) Compute A=3−11∫13x2dx.(c) Find c∈[1,3] with f(c)=A.Answer: A=313,c=313(≈2.081665…).
Problem 2.4
(a) Let f(x)=sinx on [6π,65π].(b) Compute A=65π−6π1∫π/65π/6sinxdx.(c) Find c∈[6π,65π] with sinc=A.Answer: A=2π33,c=arcsin(2π33)(∈(6π,2π)).
Problem 2.5
(a) Let f(x)=e−x on [0,2].(b) Compute A=2−01∫02e−xdx.(c) Find c∈[0,2] with e−c=A.Answer: A=21−e−2,c=−ln(21−e−2)(≈0.838…).
Problem 2.6
(a) Let f(x)=1+x21 on [0,1].(b) Compute A=1−01∫011+x21dx.(c) Find c∈[0,1] with 1+c21=A.Answer: A=4π,c=π4−1(∈(0,1)).
Differentiation of Integral-Based Expression
Problem 3.1
Let f be continuous on [a,b] and define F(x)=∫axf(t)dt for x∈[a,b].Show that F is differentiable on (a,b) and F′(x)=f(x).Answer (outline): Fix x∈(a,b) and consider hF(x+h)−F(x)=h1∫xx+hf(t)dt.Use continuity of f at x to bound f(t) between f(x)±ε on a small interval around x,apply the squeeze theorem to the difference quotient, and conclude F′(x)=f(x).
Problem 3.2
Let f be continuous on an interval containing [a,b] and let g be differentiable.Define H(x)=∫ag(x)f(t)dt.Show that H′(x)=f(g(x))g′(x).Answer (outline): Write H(x+h)−H(x)=∫g(x)g(x+h)f(t)dt.Express this as (g(x+h)−g(x))⋅(average of f on that interval).Use continuity of f at g(x) to control the average value, and the differentiability of g to control g(x+h)−g(x).Take the limit as h→0 to obtain H′(x)=f(g(x))g′(x).
Problem 3.3
(a) Let F(x)=∫0x2(1+t3)dt.Find F′(x).(b) Let G(x)=∫x11+t2dt.Find G′(x).Answer: (a)F′(x)=2x(1+x6).(b)G′(x)=−1+x2.
Problem 3.4
(a) Let H(x)=∫1sinxtlntdt.Find H′(x).(b) Let K(x)=∫x2x3e−t2dt.Find K′(x).Answer: (a)H′(x)=sinxln(sinx)cosx.(b)K′(x)=3x2e−x6−2xe−x4.
Problem 3.5
(a) Let y1(x)=∫0xcos(t2)dt.Find y1′(x).(b) Let y2(x)=∫0x1+t41dt.Find y2′(x).Answer: (a)y1′(x)=cos(x2).(b)y2′(x)=1+x41.
Problem 3.6
(a) Let f1(x)=∫−2xt2+4t2+1dt.Find f1′(x).(b) Let f2(x)=∫−xxet2dt.Find f2′(x).Answer: (a)f1′(x)=x2+4x2+1.(b)f2′(x)=2ex2.
Problem 3.7
(a) Let F(x)=x2∫0x1+t4dt.Find F′(x).(b) Let G(x)=∫xx2ln(1+t2)dt.Find G′(x).Answer: (a)F′(x)=2x∫0x1+t4dt+x21+x4.(b)G′(x)=2xln(1+x4)−ln(1+x2).
Trapezoidal Rule
Problem 4.1
Composite trapezoidal rule on [0,1] for f(x)=x2.h=n1.(a) Write Tn=h[2f(0)+f(1)+k=1∑n−1f(kh)].(b) Find a closed form for Tn and the exact error En=Tn−∫01x2dx.(c) Smallest n with ∣En∣<10−3.Answer: Tn=6n22n2+1,∫01x2dx=31,En=6n21,nmin=13.Solution: Tn=n1[20+1+k=1∑n−1(nk)2]=n1[21+n21k=1∑n−1k2].k=1∑n−1k2=6(n−1)n(2n−1)⇒Tn=n1[21+6n(n−1)(2n−1)]=6n22n2+1.∫01x2dx=31⇒En=Tn−31=6n21.∣En∣<10−3⇒n2>6⋅10−31=166.6⇒nmin=13.
Problem 4.2
Composite trapezoidal rule on [0,1] for f(x)=x3.h=n1.(a) Tn=h[2f(0)+f(1)+k=1∑n−1f(kh)].(b) En=Tn−∫01x3dx.(c) Smallest n with ∣En∣<10−3.Answer: Tn=4n2n2+1,∫01x3dx=41,En=4n21,nmin=16.
Problem 4.3
Composite trapezoidal rule on [0,2] for f(x)=x2.h=n2.(a) Compute Tn.(b) Exact En=Tn−∫02x2dx.(c) Smallest n with ∣En∣<10−3.Answer: Tn=38+3n24,∫02x2dx=38,En=3n24,nmin=37.
Problem 4.4
Composite trapezoidal rule on [0,π] for f(x)=cosx.h=nπ.(a) Compute Tn.(b) Exact En=Tn−∫0πcosxdx.(c) Smallest n with ∣En∣<10−3.Answer: Tn=0,∫0πcosxdx=0,En=0,nmin=1.
Problem 4.5
Composite trapezoidal rule on [0,1] for f(x)=ex.h=n1.(a) Compute Tn.(b) Exact En=Tn−(e−1).(c) Smallest n with ∣En∣<10−3.Answer: Tn=n1[21+e+e1/n−1e−e1/n],En=Tn−(e−1),nmin=16.
Midpoint Rule
Problem 5.1
Use the midpoint rule with n=5 subintervals on [0,1] to approximate ∫01x2dx.Answer: 0.33 (approx).
Problem 5.2
Use the midpoint rule with n=4 subintervals on [0,2] to approximate ∫02exdx.Answer: 6.3230 (approx).
Problem 5.3
Use the midpoint rule with n=6 subintervals on [0,π] to approximate ∫0πsinxdx.Answer: 2.0230 (approx).
Problem 5.4
Use the midpoint rule with n=4 subintervals on [0,2π] to approximate ∫0π/2cosxdx.Answer: 1.0065 (approx).
Problem 5.5
Use the midpoint rule with n=4 subintervals on [0,2] to approximate ∫021+x21dx.Answer: 1.1088 (approx).
Simpson's Approximation
Problem 6.1
Use Simpson’s rule with n=4 equal subintervals on [0,2] to approximate ∫02x2dx.Answer: 38≈2.67.
Problem 6.2
Use Simpson’s rule with n=4 equal subintervals on [0,1] to approximate ∫01exdx.Answer: ≈1.71832.