Almaz Khusnutdinov•Math enthusiast, love coding and mathematics
Published 8/26/2025
Change of Bases
Problem 1.1
Let A=[21−1034]. Recall that A determines F:R3→R2 by F(v)=Av (vectors are columns).Find the matrix [F] relative to the bases below.(a) The usual bases of R3 and R2.(b) S={w1,w2,w3}={(1,1,0),(1,0,1),(0,1,1)},S′={u1,u2}={(1,1),(1,2)}. Compute [F]S′←Swithout forming change-of-basis matrices (solve by linear combinations).(c) Confirm (b) using Q=[I]e←S,P=[I]S′←e and verify [F]S′←S=PAQ.Solution:(a) [F]e=A=[21−1034].(b) F(w1)=A110=[11],F(w2)=A101=[55],F(w3)=A011=[24].Write F(wj)=aju1+bju2(u1=(1,1),u2=(1,2)).Solve aj+bj=(F(wj))1,aj+2bj=(F(wj))2.⇒bj=(F(wj))2−(F(wj))1,aj=2(F(wj))1−(F(wj))2.Hence (a1,b1)=(1,0),(a2,b2)=(5,0),(a3,b3)=(0,2).⇒[F]S′←S=[105002].(c) Q=[I]e←S=110101011,[I]e←S′=[1112],P=[I]S′←e=[2−1−11].PAQ=[2−1−11][21−1034]110101011=[105002]=[F]S′←S.
Problem 1.2
Let A=[3−11201]. Recall that A determines F:R3→R2 by F(v)=Av.Find the matrix [F] relative to the bases below:(a) The usual bases of R3 and R2.(b) S={w1,w2,w3}={(1,0,1),(1,1,0),(0,1,1)},S′={u1,u2}={(1,0),(1,1)}. Compute [F]S′←Swithoutchange−of−basismatrices(solvebylinearcombinations).(c) Confirm (b) using Q=[I]e←S,P=[I]S′←e and verify [F]S′←S=PAQ.Solution:(a) [F]e=A=[3−11201].(b) F(w1)=[30],F(w2)=[41],F(w3)=[13].Write F(wj)=aju1+bju2(u1=(1,0),u2=(1,1)).Then (aj+bj,bj)=F(wj)⇒bj=(F(wj))2,aj=(F(wj))1−(F(wj))2.⇒(a1,b1)=(3,0),(a2,b2)=(3,1),(a3,b3)=(−2,3).∴[F]S′←S=[3031−23].(c) Q=[I]e←S=101110011,[I]e←S′=[1011]⇒P=[I]S′←e=[10−11].PAQ=[10−11][3−11201]101110011=[3031−23]=[F]S′←S.
Problem 1.3
Let A=101210. Recall that A determines F:R2→R3 by F(v)=Av.Find the matrix [F] relative to the bases below:(a) The usual bases of R2 and R3.(b) S={b1,b2}={(1,1),(1,−1)},S′={u1,u2,u3}={(1,1,0),(0,1,1),(1,0,1)}. Compute [F]S′←Swithoutchange−of−basismatrices.(c) Confirm (b) using Q=[I]e←S,P=[I]S′←e and verify [F]S′←S=PAQ.Solution:(a) [F]e=A=101210.(b) F(b1)=A[11]=311,F(b2)=A[1−1]=−1−11.Write F(bj)=aju1+bju2+cju3.Since u1=(1,1,0),u2=(0,1,1),u3=(1,0,1),(aj+cj,aj+bj,bj+cj)=F(bj).Solve aj=2(F(bj))1+(F(bj))2−(F(bj))3,bj=2(F(bj))2+(F(bj))3−(F(bj))1,cj=2(F(bj))1+(F(bj))3−(F(bj))2.⇒(a1,b1,c1)=(23,−21,23),(a2,b2,c2)=(−23,21,21).∴[F]S′←S=23−2123−232121.(c) Q=[I]e←S=[111−1],[I]e←S′=110011101⇒P=[I]S′←e=21−21212121−21−212121.PAQ=21−21212121−21−212121101210[111−1]=23−2123−232121=[F]S′←S.
Smith Normal Form
Problem 2.1
Let A=[100111]be the (standard-basis) 2×3 matrix of T:R3→R2.(a) Construct a basis B of R3 whose last vector spans kerA,and a basis C of R2 whose first two vectors form a basis of imA.Let Q=[I]B∈GL3(R),P=[I]C−1∈GL2(R).Show that PAQ=[100100].(b) Compute rank(A),dimkerA,dimker(A⊤).Answer: kerA=span{(−1,−1,1)⊤}.Choose B={e1,e2,b3(−1,−1,1)⊤},C={Ae1,Ae2}={(1,0)⊤,(0,1)⊤}.Q=[I]B=100010−1−11,AQ=[100100].[I]C=[1001],P=[I]C−1=I2.⇒PAQ=[100100].rank(A)=2,dimkerA=3−2=1,dimker(A⊤)=2−2=0.
Table of Contents
Matrix Representation & Linear Mappings - Part 3 - nerjik.com