Total Differential. Gradient. Linearization in Two Variables. Part 1
Almaz Khusnutdinov•Math enthusiast, love coding and mathematics
Published 9/10/2025
Total Differential in Two Variables. Gradient Map
Problem 0.1
Let f:R2→R have partial derivatives continuous at (x0,y0).Prove that f is differentiable at (x0,y0) and the total differential is dz=fx(x0,y0)dx+fy(x0,y0)dy.Outline and detailed explanation: Set Δz=f(x0+Δx,y0+Δy)−f(x0,y0).Add and subtract f(x0+Δx,y0):Δz=[f(x0+Δx,y0)−f(x0,y0)]+[f(x0+Δx,y0+Δy)−f(x0+Δx,y0)].By the 1D mean value theorem in x,∃ξ between x0 and x0+Δx:f(x0+Δx,y0)−f(x0,y0)=fx(ξ,y0)Δx.By the 1D mean value theorem in y,∃η between y0 and y0+Δy:f(x0+Δx,y0+Δy)−f(x0+Δx,y0)=fy(x0+Δx,η)Δy.Hence Δz=fx(ξ,y0)Δx+fy(x0+Δx,η)Δy.Continuity of fx,fy at (x0,y0)⇒fx(ξ,y0)→fx(x0,y0),fy(x0+Δx,η)→fy(x0,y0)as (Δx,Δy)→(0,0). Write Δz=fx(x0,y0)Δx+fy(x0,y0)Δy+r(Δx,Δy),where r=(fx(ξ,y0)−fx(x0,y0))Δx+(fy(x0+Δx,η)−fy(x0,y0))Δy.Then (Δx)2+(Δy)2∣r∣→0,so f is differentiable and dz:=fx(x0,y0)dx+fy(x0,y0)dyis the total differential.Answer: dz=fx(x0,y0)dx+fy(x0,y0)dy.
Problem 0.2
Let f(x,y)=x2y+exy. Find dz at (1,0),the linearization L(x,y) there, and estimate f(1.02,−0.01).Answer: dz=(0)dx+(2)dy,L(x,y)=1+2y,f(1.02,−0.01)≈0.98.Note: L(x,y)denotes the affine linearization at a=(1,0):L(x,y)=f(a)+Df(a)[(x−a,y−b)].It is not the linear map on a displacement.Common split: Ta(x)=f(a)+Df(a)[x−a](affine value),L(h)=Df(a)[h](linear change).
Problem 0.3
Let f(x,y)=ln(1+x+2y). Along x(t)=t2,y(t)=sint,use dz to find dtdzt=0and a first-order approximation to f(x(t),y(t)) for small t.Answer: dtdzt=0=2,f(x(t),y(t))≈0+2t.
Problem 0.4
Let f(x,y)=x2+4y2. At (3,4) use dz to predict the change for dx=−0.03,dy=0.02.Answer: dz=733dx+7316dy,Δz≈73−0.09+0.32≈0.0269.
Problem 0.5
Let f(x,y)=x3+y3 and take a step (dx,dy) from (x,y). Compute dz and the exact remainder R=Δf−dz.Answer: dz=3x2dx+3y2dy,R=3xdx2+dx3+3ydy2+dy3.
Linearization in Two variables.
Problem 1.1
Let f(x,y)=1+x+2y.Use differentials to estimate the increase in f when (x,y):(0,0)→(0.04,0.02).Also estimate the relative change f(0,0)Δf.Answer: Δf≈0.04,fΔf≈0.04(4%).
Problem 1.2
Let f(x,y)=x2ey.Use differentials to estimate the increase in f when (x,y):(1,0)→(1.10,−0.05).Also estimate the relative change f(1,0)Δf.Answer: Δf≈0.15,fΔf≈0.15(15%).
Problem 1.3
Let f(x,y)=excosy.Use differentials to estimate the increase in f when (x,y):(0,0)→(0.06,0.02).Also estimate the relative change f(0,0)Δf.Answer: Δf≈0.06,fΔf≈0.06(6%).
Approximations
Problem 2.1
Let f(x,y)=exysin(x−y).Use differentials to estimate the change in f when (x,y):(1,0)→(0.97,0.04).Also estimate the relative change f(1,0)Δf.Answer: Δf≈−0.00416,fΔf≈−0.00495(−0.495%).
Problem 2.2
Let f(x,y)=ln(1+x2+2y2).From (1,1),estimate (via differentials) the maximal possible increase in f over any step of length s=0.05.Also report a unit direction achieving it (angle from the +x-axis).Answer: Δfmax≈0.05590,u≈(0.4472136,0.8944272)(θ≈1.1071rad).
Problem 2.3
Let F(x,y)=xey+y3−3=0 define y=y(x) near (3,0).Use differentials to estimate the new y when x:3→3.06.Also report the predicted Δy.Answer: y≈−0.02,Δy≈−0.02.
Problem 2.4
Let f(x,y)=arctan(xy)+ex−y.Move along the line y=2x starting at (1,2) with Δx=0.03.Use differentials to estimate Δf.Also estimate the relative change f(1,2)Δf.Answer: Δf≈0.01296,fΔf≈0.00879(0.879%).
Problem 2.5
Let f(x,y)=x2y+ln(1+x−y).From (1,0),suppose ∣Δx∣≤0.02,∣Δy∣≤0.03.Use differentials to estimate the maximal increase in f.Also give an increment (Δx,Δy) that attains it.Answer: Δfmax≈0.025,attained by Δx=+0.02,Δy=+0.03.
Problem 2.6
Let f(x,y)=ex−y2cos(2x+y).At (0,0) find dz,the linearization T(x,y),and estimate f(0.02,−0.01).Answer: f(0,0)=1,fx(0,0)=1,fy(0,0)=0;dz=1dx+0dy;T(x,y)=1+(x−0)+0⋅(y−0)=1+x;f(0.02,−0.01)≈T(0.02,−0.01)=1.02.
Problem 2.7
Let f:R2→R have partial derivatives continuous at (a,b).Here we fix the notation: a=(a,b)∈R2,h=(h1,h2)∈R2,a+h:=(a+h1,b+h2).Prove that f is differentiable at a and f(a+h)−f(a)=fx(a,b)h1+fy(a,b)h2+o(∥h∥).Answer (outline): Define the increment Δf:=f(a+h)−f(a)=f(a+h1,b+h2)−f(a,b).Insert and subtract the middle term f(a+h1,b)(purely algebraic identity X−Z=(X−Y)+(Y−Z)):Δf=move in x only[f(a+h1,b)−f(a,b)]+then move in y[f(a+h1,b+h2)−f(a+h1,b)].Apply 1D MVT to each bracket: ∃ξ between a and a+h1,∃η between b and b+h2such thatf(a+h1,b)−f(a,b)=fx(ξ,b)h1,f(a+h1,b+h2)−f(a+h1,b)=fy(a+h1,η)h2.⇒Δf=fx(ξ,b)h1+fy(a+h1,η)h2.Continuity of fx,fy at (a,b) gives fx(ξ,b)→fx(a,b),fy(a+h1,η)→fy(a,b)as h→0.Write Δf=fx(a,b)h1+fy(a,b)h2+=:r(h)([fx(ξ,b)−fx(a,b)]h1+[fy(a+h1,η)−fy(a,b)]h2).Then ∥h∥∣r(h)∣→0,so f is differentiable at a,and dz=fx(a,b)dx+fy(a,b)dy.Notation reminders: a is the fixed base point; h is the displacement; a+h=(a+h1,b+h2).Δf is split by adding and subtracting f(a+h1,b).
Problem 2.8
Let f(x,y)=ln(1+x+2y).On the level set f(x,y)=0 near (0,0),use dz=0 to find a linear approximation y(x).Answer: fx(0,0)=1,fy(0,0)=2.dz=fxdx+fydy=dx+2dy=0⇒dy/dx=−21.y(x)≈−21xfor x near 0.
Problem 2.9
Uncertainty propagation.z=1+xx2y.At (x,y)=(2,3)with ∣dx∣≤0.01,∣dy∣≤0.02,estimate ∣Δz∣ via dz.Answer: fx=(1+x)2(2xy)(1+x)−x2y=(1+x)2xy(2+x),fy=1+xx2.fx(2,3)=(1+2)23⋅2⋅(2+2)=924=38,fy(2,3)=34.∣dz∣≤∣fx∣∣dx∣+∣fy∣∣dy∣≤38⋅0.01+34⋅0.02=3008+8=30016≈0.0533.z(2,3)=34⋅3=4⇒z≈4±0.0533.
Problem 2.10
Let f(x,y)=x2+4y2,x(t)=1+0.1t2,y(t)=2−0.05t.Find dtdf(x(t),y(t))t=0and the first-order t-approximation.Answer: fx=x2+4y2x,fy=x2+4y24y.(x,y)=(1,2)⇒fx=171,fy=178.x′(0)=0,y′(0)=−0.05⇒dtdf(x(t),y(t))0=fx⋅0+fy⋅(−0.05)=−170.4.f(x(t),y(t))≈f(1,2)+(−170.4)t=17−170.4t.
Problem 2.11
Let f(x,y)=x2y.At (x,y)=(3,1) and step (dx,dy)=(−0.03,0.02),compute dz and compare with the exact Δf.Answer: fx=2xy,fy=x2.dz=2xydx+x2dy=2⋅3⋅1⋅(−0.03)+9⋅0.02=−0.18+0.18=0.Δf=f(2.97,1.02)−f(3,1)=(2.97)2⋅1.02−9=8.8209⋅1.02−9=8.997318−9=−0.002682.Exact remainder: Δf−dz=for f=x2y2xdxdy+ydx2+dx2dy.At (3,1):−0.0036+0.0009+0.000018=−0.002682.
Problem 2.12
Let f(x,y)=exy,x(t)=2−0.1t,y(t)=−1+0.2t2.Find dtdf(x(t),y(t))t=0and the first-order t-approximation.Answer: dtdf(x(t),y(t))t=0=0.1e−2,f(x(t),y(t))≈e−2+0.1e−2t.
Problem 2.13
Let f(x,y)=ln(1+x2+3y),x(t)=−1+t,y(t)=1−t2.Find dtdf(x(t),y(t))t=0and the first-order t-approximation.Answer: dtdf(x(t),y(t))t=0=−52,f(x(t),y(t))≈ln5−52t.
Problem 2.14
Let f(x,y)=1+xy2,x(t)=4+0.5t,y(t)=1−0.1t.Find dtdf(x(t),y(t))t=0and the first-order t-approximation.Answer: dtdf(x(t),y(t))t=0=−2053,f(x(t),y(t))≈5−2053t.
General Approximation in case of N-variables
Problem 3.1
Let f(x,y,z)=1+2x−y+3z2and set w=f(x,y,z).At a=(0,0,0) find dw,the linearization T(x,y,z),and estimate f(0.02,0.01,−0.01).Answer: fx(a)=1,fy(a)=−21,fz(a)=0.dw=1dx−21dy+0⋅dz,T(x,y,z)=1+(x−0)−21(y−0)=1+x−21y,f(0.02,0.01,−0.01)≈T(0.02,0.01,−0.01)=1.015.Note: w=f(x,y,z)is the output; dwis its differential. Inputs have dx,dy,dz.
Problem 3.2
Quadratic model in R4.f(x)=21x⊤Ax+b⋅x,A=diag(2,1,3,4),b=(1,−2,0,3).At a=(1,1,1,1) find dz and the linearization T(x).Answer: ∇f(x)=Ax+b⇒∇f(a)=(3,−1,3,7).dz=∇f(a)⋅h=(3,−1,3,7)⋅h,f(a)=7,T(x)=7+(3,−1,3,7)⋅(x−a).
Problem 3.3
Norm of a linear image in R3.f(x)=∥Mx∥,M=diag(1,2,3).At a=(1,1,1)find dz and the directional derivative along v=(1,−2,2).Answer: Mx=(x1,2x2,3x3),∇f(x)=∥Mx∥M⊤Mx=x12+4x22+9x32(x1,4x2,9x3).∇f(a)=14(1,4,9),dz=∇f(a)⋅h.Dvf(a)=∇f(a)⋅∥v∥v=3141⋅1+4(−2)+9⋅2=31411.
Problem 3.4
Error bound in R4.f(x)=sin(2x1−x2+3x4). At a=0, with ∣h1∣≤0.01,∣h2∣≤0.02,∣h3∣≤0.01,∣h4∣≤0.005,give a first-order bound on ∣Δf∣.Answer: dz=∇f(a)⋅h=(2,−1,0,3)⋅h⇒∣dz∣≤2∣h1∣+∣h2∣+3∣h4∣≤0.055.So ∣Δf∣≈∣dz∣≤0.055(first-order bound).
Problem 3.5
Linearized constraint in R3.G(x1,x2,x3)=x12+2x2−x3−5=0.Near a=(2,1,1) find the linearized formula for x3 as a function of (x1,x2).Answer: dG=2x1dx1+2dx2−dx3.At a:2⋅2dx1+2dx2−dx3=0⇒dx3=4dx1+2dx2.x3≈1+4(x1−2)+2(x2−1).