Almaz Khusnutdinov•Math enthusiast, love coding and mathematics
Published 8/23/2025
Problem 1. Finding SNF - PAQ
Let A=100010110∈M3×3(R).(a) Find invertible P∈GL3(R),Q∈GL3(R) such that PAQ=diag(1,1,0).(b) Give bases of kerA and imA.Answer: Q=100010−1−11,P=I3,AQ=100010000.kerA=span{(1,1,−1)},imA=span{e1,e2}.Explanation: c3=c1+c2⇒c3←c3−c1−c2. The right multiplication by Q=I−E1,3−E2,3 realizes this, so AQ=diag(1,1,0).No row operations are needed, hence P=I3. Then kerA={(x,y,z):x+z=0,y+z=0}=span{(1,1,−1)},and the first two columns of AQ show imA=span{e1,e2}.
Problem 2. Proof - Kernel Equality in Smith Normal Form
Let A∈Rm×nand suppose there exist invertible matrices P∈GLm(R),Q∈GLn(R)such that PAQ=D,where D=[Ir000]is the Smith normal form of A.Prove that kerA=Q(kerD).Proof outline:(1)If x∈kerD,then Qx∈kerA.(2)If y∈kerA,then ∃x∈kerDwith y=Qx.(3)Therefore kerA=Q(kerD).
Problem 3. Proof - Kernel Isomorphism in the General Case
Let A,D∈Rm×nand suppose there exist invertible matrices P∈GLm(R),Q∈GLn(R)such that PAQ=D.Prove that kerA≅kerD.Proof Outline:(1)Define φ:kerD→kerAby φ(x)=Qx.(2)Well-defined: if x∈kerD,Dx=0⇒PAQx=0⇒AQx=0⇒Qx∈kerA.(3)Injective: Qx=0⇒x=0(since Q is invertible).(4)Surjective: for y∈kerA,Ay=0⇒PAy=0⇒DQ−1y=0⇒Q−1y∈kerD,y=Q(Q−1y).(5)Therefore φ is an isomorphism, hence kerA≅kerD.
Problem 4. 2×4 Matrix to SNF
Let A=[10012311]∈M2×4(R).Find P∈GL2,Q∈GL4 with PAQ=[I20].Answer: Q=10000100−2−310−1−101,P=I2,AQ=[10010000].
Problem 5. Characterization by Rank (proof outline)
Let A,B∈Mm×n(F).Prove that A and B are equivalent (∃P∈GLm,Q∈GLn:B=PAQ)iff rank(A)=rank(B).Answer (outline): (⇒)Left/right multiplication by invertible matrices preserves rank, so rank(B)=rank(A).(⇐)Reduce each matrix by row/column operations to diag(Ir,0)with r=rank(A)=rank(B).If A=P1−1diag(Ir,0)Q1−1and B=P2−1diag(Ir,0)Q2−1,then B=(P2−1P1)A(Q1Q2−1).
Problem 6. Reducing a 3×2 Matrix to diagonal
Let A=123246∈M3×2(R).Find P∈GL3,Q∈GL2 such that PAQ=100000.Answer: Q=[10−21],AQ=123000,P=1−2−3010001,PAQ=100000.kerA=span{(−2,1)},rank(A)=1.
Problem 7. Column Swap and One Elimination
Let A=010110010∈M3×3(R).Find P∈GL3,Q∈GL3 such that PAQ=diag(1,1,0).Answer: Q=010100001(swap C1↔C2),AQ=110010010,P=1−10010001,PAQ=100010000.