Almaz Khusnutdinov•Math enthusiast, love coding and mathematics
Published 8/15/2025
Problem 1 — Two different bases for domain and codomain (worked).
Let B={(1,1,0),(0,1,1),(2,0,1)},C={(1,0,1),(0,2,1),(1,1,0)},[F]C←B=23−2−110021,v=(3,−1,4).Solution.1) Change v from standard to B-coordinates.PB=110011201,PB−1=31−31313231−31−323231.[v]B=PB−1[v]ε=31−31313231−31−3232313−14=−373438.2) Apply the given matrix to get [F(v)]C.[F(v)]C=[F]C←B[v]B=23−2−110021−373438=−6−31322.3) Convert [F(v)]C to standard coordinates.PC=101021110,F(v)=PC[F(v)]C.F(v)=101021110−6−31322=34320−319.F(v)=(34,320,−319)
Problem 2 — Composition with different domain/codomain bases
Let B={(1,1),(2,0)},C={(1,0),(1,1)},D={(2,1),(0,1)}be bases of R2.Suppose[F]C←B=[1021],[G]D←C=[21−13].(a) Compute [G∘F]D←B.(b) For v=(5,−2) in standard coordinates, find (G∘F)(v) in standard coordinates.Answer: [G∘F]D←B=[2135],(G∘F)(5,−2)=(13,22).
Problem 3 — Recover the standard matrix and evaluate F
Let B={(1,2),(1,0)},C={(0,1),(1,1)} be bases of R2.Given [F]C←B=[0−213],compute the standard matrix A of F(so that [F(v)]ε=A[v]ε∀v),and then compute F(w) for w=(1,−1).Answer: A=[34−25−3],F(1,−1)=(211,7).
Problem 4 — Preimage with mixed bases
Let B={(1,0,1),(0,1,1),(1,1,0)},C={(2,0,0),(0,1,1),(1,0,1)}be bases of R3.Suppose [F]C←B=10102−1211.Given y=(4,1,3) in standard coordinates, find u in standard coordinates such that F(u)=y.Answer: u=(4,−1,9).
Problem 5 — Invertibility and image of a basis vector
Let B={(2,1),(1,1)},C={(1,0),(1,2)}be bases of R2.With [F]C←B=[3012]:(a) Find the standard matrix A=PC[F]C←BPB−1.(b) Compute detA,decide if F is invertible.(c) Compute F(e1)where e1=(1,0).Answer: A=[0−438],detA=12(=0)⇒Finvertible,F(e1)=(0,−4).