Almaz Khusnutdinov•Math enthusiast, love coding and mathematics
Published 11/21/2025
Natural Logarithm
Problem 1.1
Find y′ using logarithmic differentiation if y=x(1−x2)(x2+1)5/2.Answer: y′=x(1−x2)(x2+1)5/2(x2+15x−x1+1−x22x).
Problem 1.2
Find y′ using logarithmic differentiation if y=1+x2(1+x)3(1−x)2.Answer: y′=1+x2(1+x)3(1−x)2(1+x3−1−x2−1+x2x).
Problem 1.3
Find y′ using logarithmic differentiation if y=(2+x3)2x41−x2.Answer: y′=(2+x3)2x41−x2(x4−1−x2x−2+x36x2).
Problem 1.4
Find y′ using logarithmic differentiation if y=x2(1+x2)3/23x2−1.Answer: y′=x2(1+x2)3/23x2−1(3(x2−1)2x−x2−1+x23x).
Jensen's Inequality
Problem 2.1
Let x1,…,xn>0.Use Jensen’s inequality for the concave function lnx to show thatn1k=1∑nlnxk≤ln(n1k=1∑nxk).Answer: n1k=1∑nlnxk≤ln(n1k=1∑nxk),with equality iff x1=⋯=xn.
Problem 2.2
Let x1,…,xn>0 with k=1∑nxk=1.Use Jensen’s inequality for the convex function f(x)=1+x1 on (0,∞) to obtain a lower bound for k=1∑n1+xk1.Answer: k=1∑n1+xk1≥n+1n2,with equality iff x1=⋯=xn=n1.
Problem 2.3
Let x1,…,xn∈[0,π] and set xˉ=n1k=1∑nxk.Using that sinx is concave on [0,π],apply Jensen’s inequality to compare n1k=1∑nsinxk and sinxˉ.Answer: n1k=1∑nsinxk≤sin(n1k=1∑nxk),with equality iff x1=⋯=xn or all xk∈{0,π}.
Problem 2.4
Let N=5+6+⋯+13.Show that the integer part of N lies between 26 and 27.Outline: (1) Compare each term k with suitable constants to get an upper bound, e.g. k<13 for all k≤13,or group terms and compare with simple numbers like 3,4,5 to show N<27.(2) Similarly, use k>4=2 for k≥5 or sharper estimates (e.g. 9=3) to obtain N>26.(3) Conclude 26<N<27, so the integer part of N is 26.Answer: ⌊N⌋=26.