Almaz Khusnutdinov•Math enthusiast, love coding and mathematics
Published 11/2/2025
Triangular Forms
Problem 1.1
Let A=200130045.(a) Compute Δ(t)=det(tI−A).(b) Find the eigenvalues and verify that tr(A),det(A) equal the sum/product of eigenvalues.Detailed solution: tI−A=t−200−1t−300−4t−5is upper triangular, soΔ(t)=det(tI−A)=(t−2)(t−3)(t−5).Eigenvalues: 2,3,5.tr(A)=2+3+5=10,det(A)=2⋅3⋅5=30.Sum/product of eigenvalues: 2+3+5=10,2⋅3⋅5=30.✓Answer: Δ(t)=(t−2)(t−3)(t−5),eigenvalues 2,3,5,tr(A)=10,det(A)=30.
Problem 1.2
Prove (outline): If A is triangular, then Δ(t)=det(tI−A)=i=1∏n(t−aii).Answer (outline): (1) tI−Ais triangular with diagonal entries t−a11,…,t−ann.(2) The determinant of a triangular matrix is the product of its diagonal entries.(3) Hence det(tI−A)=(t−a11)⋯(t−ann).
Problem 1.3
Prove (outline): If the characteristic polynomial of T:V→Vsplits over F,then there exists a basis in which [T]is upper triangular.Answer (outline): (1) Splitting ⇒there exists an eigenvalue λand eigenvector v1.(2) Extend v1to a basis B=(v1,…,vn).In this basis, [T]B=[λ0∗∗](block upper triangular).(3) The span of v1⊥(the remaining n−1 vectors) is T-invariant; restrict Tto it.(4) Apply induction on dimension to triangularize the restriction; combine blocks to get an upper triangular [T].
Problem 1.4
Let A=100110002.Find the minimal polynomial mA(t).Answer: mA(t)=(t−1)2(t−2).
Problem 1.5
Let A=a00∗b0∗∗cbe upper triangular (stars arbitrary), and let m∈N.Compute det(Am)and tr(Am).Answer: det(Am)=(abc)m,tr(Am)=am+bm+cm.